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Abstract—We introduce TWOVAULT, a cryptographic data
storage mechanism with novel features that has been designed
primarily for securing removable memory devices and Solid State
Disks. The design is organization-centric and therefore suitable
for large corporations and governmental organizations that wish
to control the access and flow of sensitive information.

In TWOVAULT, data confidentiality and integrity protection
are achieved with Envaulting, a standards-based cryptographic
mechanism for securing stored data with keyless access control.
Envaulted removable devices can be remotely disabled if the
device is stolen or lost. Furthermore TWOVAULT makes attempts
to access envaulted data traceable by its owners.

In Envaulting, cryptographically diffused data is split into
two parts of unequal size. The larger portion is stored in a
container (e.g. a USB Flash Drive), while the smaller portion,
together with keying information, is stored in a separate fragment
database, the FragmentVault Server. After establishing a secure
connection with FragmentVault, the user sees files stored in the
data container as part of the regular file system, making the
system transparent and easy to use.

Encrypted blocks in the data containers are indexed by a
FragmentVault server using a mechanism that gives it a high
degree of deniability; TWOVAULT is a deniable steganographic
filesystem. The total amount of information stored on a device
remains unknown to an adeversary even if portions of it has to
be revealed due to legal or extralegal pressure.

The Content-Addressed Storage (CAS) mechanism of
TWOVAULT often eliminates block duplicate writes on the con-
tainer (removable storage device), speeding up common opera-
tions, increasing capacity and device lifetime. The indexing sys-
tem also allows “undo” operations; recovery of earlier snapshot
views the filesystem.

A fully operational prototype of TWOVAULT has been imple-
mented for the Linux operating system.

Keywords— Data storage, protocol, analysis

I. INTRODUCTION

We shall first introduce the concepts and motivational ob-
servations behind TWOVAULT.

One of the motivating observations in the design of
TWOVAULT is the widely predicted and already occurring
transition from spinning magnetic disks to solid state storage.
Filesystems have traditionally been designed to optimize the
storage of files onto continuous blocks on disks to enable
fast retrieval. One of the main differentiating characteristics
of Flash and Solid State Drive (hereafter simply SSD) stor-
age solutions is near-zero latency and seek time. Usage of
defragmentation tools on SSDs makes little sense as blocks
on these drives can be accessed in random order. We note that
NAND flash memory does not behave exactly like RAM; the
underlying technology often necessitates that information is
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erased one allocation block at a time, thus making byte-level
random access slow.

Another major difference between traditional disk systems
and SSD systems is that the latter may only offer a limited
number number of erase/write cycles. Some vendors only
guarantee 10000 writes before errors may occur. We address
this problem by randomizing the use of a disk across the
entire physical drive space. TWOVAULT has near-optimal
wear-leveling characteristics, thus increasing drive lifetime.

A. Envaulting

The essential feature of the Envaulting concept is that
some a priori knowledge of complete plaintext contents is
required to decrypt a block of data — even if the secret key is
known. The entropy of a message is split into two halves of
unequal size; the larger portion can be stored or transmitted
on high-capacity medium, and the much smaller portion on
low-bandwidth secure channel. Both portions are required to
reconstruct the original message and can be used to verify its
integrity.

In the TWOVAULT instantiation of Envaulting the high-
capacity medium is a SSD and the low-bandwidth secure
channel is an online connection to a “FragmentVault” Server.
Other instantiations might use a fast internet connection or
shared disk space as the insecure channel and a quantum link
or a smart card as the secure low-bandwidth channel.

There are many ways to perform Envaulting, but in the
present work we use a cryptographic hash function and a
tweakable block cipher mode of operation as the Envaulting
construction (see Figure 1). The Envaulting operation is dis-
cussed in detail in Section II-B.

The theoretical background of Envaulting can be traced to
Claude Shannon’s 1948 work on information theory; in some
ways the low-capacity channel acts as an Error Correcting
Code that allows decoding of the data in the high-capacity
medium (see Section 12 in [1]). However, due to use of
a cryptographic diffusion layer, no partial information about
plaintext is leaked unless both portions, together with a third
element, a symmetric cryptographic key, are fully available.

B. Resistance to Key Disclosure

Most traditional encryption systems encrypt the entire
protected volume with a single key that is derived from
a passphrase or password in some way. Dictionary attacks
against the passphrase cannot be mounted against envaulted
volumes.

Recent research has found many (if not most) disk en-
cryption systems vulnerable to so-called cold-boot attacks
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Fig. 1. Envaulting and devaulting using a hash function. Use of a hash
function as a tweak guarantees that the ciphertext is fully diffused. Decryption
of a block is not possible without the hash value h, even if the secret
encryption key is known to the adversary.

[2]. Cold-boot attacks are based on the observation that the
contents of system memory degrade slower than previously
thought, allowing attackers to remove physical memory and
copy passwords and encryption keys from system memory.

Even a full snapshot disclosure of encryption keys and Frag-
ment Vault contents does not allow decryption of modifications
performed after the snapshot has been made. Envaulted storage
therefore has forward secrecy properties, as applicable to static
storage.

C. Content-Addressed Storage and Version Control

TWOVAULT implements a CAS (Content-Addressed Stor-
age) scheme. If two bulk data blocks (of size that is equal
to allocation unit, typically 4096 bytes) contain exactly the
same data, they are stored on the medium only once. This is
achieved using a collision-resistant hash function (see Chapter
9 of [3]).

We utilize a simple queuing mechanism for block allocation
which guarantees that blocks are not immediately reused.
Therefore previous snapshot views of the entire filesystem
can be recovered by simply altering the virtual block indexing
system.
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D. Selective Deniability

TWOVAULT introduces information hiding with an imple-
mentation of an highly efficient steganographic storage system
based on ideas of Anderson, Shamir, Needham and others [4],
[5]. This feature can be used to hide not only the plaintext
contents, but the very existence and amount of information
stored on a disk. Multiple hidden filesystem containers can
exist on a single removable media. Even if an adversary
obtains access to one such container, it does not reveal any
information about additional information stored on the device.
Proving that the storage device holder has not provided access
to all information contained in the storage device can be shown
to be impossible.

E. Organizational Remote Control

With TWOVAULT, each read and write operation must be
individually authenticated. In our implementation, an authen-
ticated SSL/TLS connection to a trusted server is required
to store and retrieve deniability, confidentiality and integrity
information. Each individual block read and write operation
can be logged on a trusted secure server. This allows access
to memory devices to be centrally controlled, and dictionary
attacks can be proactively prevented. A lost, stolen, or decom-
misioned memory device can be simply remotely disabled.
Any attempt to access it, with or without the authentication
keys, can be detected and even traced.

1I. IMPLEMENTATION

TWOVAULT utilizes a client-server model where bulk data is
stored on a SSD memory device by the TWOVAULT client, and
indexing, authentication, and integrity validation information
on a remote server, FragmentVault. The communication link
between a TWOVAULT client and FragmentVault is secured
using the SSLv3 or TLS protocol [6].

In the prototype Linux version of TWOVAULT, the client
side is implemented as a user-level process that listens to
incoming Network Block Device (NBD) connections on a
local socket. This allows installation without modifications to
current stock Linux Kernel. This is illustrated in Figure 2.

A. Binary Protocol

We currently use a very light-weight binary protocol over
SSL/TLS. The OpenSSL library [7] is used to implement AES,
RIPEMD-160 and TLS/SSL. The “https” port 443 is used
by default as typical firewall configurations allow outgoing
traffic through this port. FragmentVault is authenticated using
a trusted site X.509 certificate. The TWOVAULT client may use
any authentication mechanism allowed by the local OpenSSL
installation, including password authentication, (smart card)
certificate authentication, and various two-factor authentication
schemes.

The binary protocol is not used to transmit data blocks
stored on the bulk memory device, but rather their mes-
sage digests (hashes) and indexing information. Even if the
communication link is somehow breached, there is no actual
confidential data leakage. Figure 3 illustrates the messages in
the current binary protocol.
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Fig. 2. Kernel file systems communicate with TWOVAULT via a local NBD
socket. TWOVAULT encrypts and stores data on a bulk data device (here a
USB flash drive) while communicating with FragmentVault.

TWOVAULT FragmentVault

20 B "E200", 128-bit Identifier

52B| "size", block size, virtual size, key

12 B "Read", virtual offset »
28 B | "RdAAt", virtual offset, phys. offset, hash
28 B "Wrte", virtual offset, hash i
20 B |either: "wrAt", virtual offset, phys. offset
12B| or: "NoWr" virtual offset

Fig. 3. Illustration of the current version of the binary protocol, which is

encapsulated inside an authenticated TLS connection. All sizes and offsets are
64-bits in size, hashes are 128 bits, key is 256 bits and big-endian (network)
byte order is used for numbers.

B. Confidentiality and Integrity Mechanism

TWOVAULT confidentiality protection (encryption) is based
on the standardized Advanced Encryption Standard (AES)
algorithm in the XTS mode of operation, as specified in FIPS
197 and IEEE P1619 standards [8], [9]. The XTS mode tweak
is specified as the XOR of the cryptographic hash of the
plaintext block and physical block index.

RIPE-MD160 [10] hash function is used due to reported
problems with security of MD5 and SHA hashes. After NIST
completes its SHA-3 selection process, we plan to migrate to
the chosen SHA-3 algorithm [11].

We use the following symbols and variables in the descrip-
tion of the Envaulting encryption mode used in TWOVAULT:

& Bitwise XOR operation.
® Multiplication in the finite field GF(2'2®) defined by the
polynomial 28 + 27 + 22 + 2 + 1.
H Collision-resistant hash function RIPEMD-160.
E), AES Encryption with key k.
. AES Decryption with key k.
K Secret key. Split into two halves: K = K; | K2.
¢ Physical block index.
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7 Index within the block. For 4096-byte blocks, 0 < j <
255.

a Generator in GF(2!28) i.e. .

P; 128-bit plaintext block.

C; 128-bit ciphertext block.

Encryption and decryption is always performed on full
filesystem allocation unit blocks, typically 4096 bytes in size.
To encrypt a block, the following steps are required.

1. Compute the cryptographic hash of the message.

h=H(Py| Py | | Py-1)

2. Find its physical index on device as discussed in Section
II-C. Encryption and write operations can be avoided if
the data contents are already stored on the device.

i = find_write_loc (h);
3. Compute the tweak mask 7.
T = Eg,(h®1).
4.. Encrypt each 128-bit block ¢ = 0,1, ...
Ci=FEx,(Pe(Ted)s(Tea)

The finite field multiplication is very fast; only one shift
and conditional XOR by a 128-bit mask value is required for
computation of T ®a’ if T ®a’~! is known. XTS encryption
is illustrated in Figure 4.

,n— 1.
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Fig. 4. The IEEE 1619 XTS mode is “tweaked” with the hash of the plaintext.

For decryption operation to work, the h value must be
available — it is obtained from the FragmentVault and also
used to verify the integrity of the plaintext. Encryption and
decryption processes are the same, except for the last step 4:
44. Decrypt each 128-bit block ¢ = 0,1, ..
Integrity is verified by computing the hash of the resulting
decrypted plaintext and comparing that to the h value used in
decryption.

Using a standardized cipher and a mode of operation that
has been specifically standardized for protection of data on
storage devices, rather than a proprietary system, allows data
to be recovered even in distant future when the software tools
and platform that were used to store data are no longer easily
available. The P1619 standard has a XML-based mechanism

,n— 1.
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for storing secret keys and tweaks. TWOVAULT can be made
to support this mechanism for permanent storage.

Another feature of the XTS mode of operation when com-
pared to more classical modes of operation is its inherent
parallelism. Encryption using the CBC mode requires the
ciphertext of the previous block in order to encrypt the
next one, thus breaking parallelism. We envision standardized
hardware components that use AES in XTS mode of operation.
For discussion about the security of XTS mode of operation,
see section IV-A.

C. Indexing of Blocks by FragmentVault

Data blocks are indexed by a map based on the hash of the
data content of the block. Each unique block is only stored
once; if a block of data with given contents already exists
on disk, it is unnecessary to write an another copy of it. It
is sufficient to simply update tables that map virtual block
indexes to physical block indexes.

Indexing is based on RIPEMD-160 [10] truncated to 128
bits due to storage considerations. By birthday paradox, colli-
sions are not likely to occur before 264 ~ 1.845 % 1012 blocks
have been written on disk. This, together with 64-bit sector
addressing, allows the current solution to be comfortably
expanded up to exabyte range. [3]

The mapping of virtual block positions to physical block
positions is performed via two tables, hmap and pmap. The
array hmap is a table of hashes (type md_t) corresponding
to each virtual block. The pmap table maps physical indexes
and maintains information that is used for hash searches and
allocation of physical disk blocks. Figure 5 illustrates how
these data structures are used.

The pmap structure is internally defined as:

typedef struct {
md_t md;
uint64_t pcnt;
uint64_t scnt;
uint64_t ploc;
} pmap_t;

// hash of a block
// block usage count
// for hash search
// location on disk

We will now briefly describe the hash table algorithms used.
All of these algorithms have O(1) speed, therefore being faster
than e.g. O(logn) binary search algorithms. No sorting is
required.

1) Block allocation / deallocation: A ring queue rngqg of n
elements is used for physical block allocation and deallocation.
The ring queue is initialized with the indices of all blocks
contained in the particular volume; they can be in random
order. Also, n doesn’t have to correspond to physical disk
size in blocks. The deniability (information hiding) feature
of TWOVAULT (see [4]) relies on this property. Two index
variables, rgt op and rgend maintain the top and bottom of
the queue, in wrap-around fashion. New blocks are obtained
from the top of the queue with

new_block = rnggl[rgtop++];
if (rgtop >= n) // wraparound
rgtop = 0;

Unused ones can be freed by inserting them at the queue
end:

rngg[rgend++] = old_block;
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if (rgend >= n)
rgend = 0;

// wraparound

We chose a queue mechanism rather than a stack mechanism
to facilitate the “undo” feature; recently overwritten blocks are
not immediately reused. Undo is achieved by simply reversing
changes caused by write operations in the FragmentVault by
using a write log, This also acts as a wear-leveling mechanism.

2) Finding a block of data by hash: Cryptographic hashes
are uniformly distributed regardless of input. We linearly scale
the hash result range onto the size of pmap to get the initial
probe location as follows: The first eight bytes of the hash
are converted into a 64-bit integer x, which is the divided
with a constant d. The pmap structure therefore has [2%%/d]
entries. In the current implementation the constant is chosen

as d = |2%4/(1.2n)], where n is the size of the physical disk.

The initial index ¢ = |x/d] is called the “slot” of the hash
h. When the physical disk fills up, the pmap table also fills up
and two or more hashes try to use up the same slot ¢. The count
of hashes in each slot is maintained in pmap [i] .scnt.

uint64_t slot (h) {
return *((uint64_t *) h) / d;
}

Pseudocode for the algorithm find by hash () for find-
ing the entry in pmap that corresponds to hash h is given by.

sh=0sllot\(h) // our slot
c = pmap[s].scnt; // number of entries
SRSl // index
while (¢ > 0) {
if (h == pmap[i].md)

return 1i;
// same slot? decrease count

if (slot(pmap[i].md) == s)
==

if (++i >= pmapsiz) // wrap
=t O}

}
return NOT_FOUND

3) Reading a Block: When TWOVAULT receives a request
to read from virtual location 4, it simplys translates it into a
physical location p using the FragmentVault connection and
performs a actual read operation. In FragmentVault:

p = find_by_hash (hmap[i]);
return pmap|[p].ploc;

Note that if nothing has been written to block 7 yet, its ht ab
entry is zero. In such a case FragmentVault simply returns
“Not Available” and TWOVAULT writes a block of zeros to
the bulk store.

4) Writing a Block: Write operation is slightly more com-
plicated than the read operation. To write a block of data given
by *block at virtual location i we do the following

h = hash (block); // hash it
if (hmap[i] != NOT_USED) ({
if (h == hmap[i])
return; // NOP!

j = find_by_hash (hmap[i]);

// do we need to free this one?

if (--pmap[j].pcnt == 0) {
pmap[slot (hmap[J])].scnt——;
rngg[rgend++] = omap[]j].ploc;
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pmap
(Physical Map)
hmap Hash  |Slot fill| Count | Block disk
(Hash Map) md scnt | pent | ploc (Actual Storage)

Virtual| Hash of FBBSF1.. 0 1 Phys. | 4096-byte
index contents 1AAOAE.. 1 1 8 index | data block
0 CBCD94.. - 0 0 - 0 000000..
1 B65F3B.. 3709BA4.. 1 2 0 1 63FFFO..
2 1AAQAE.. 414A25.. 1 1 1 2 D227FD..
3 414A25.. 5D55D1.. 0 1 6 3 FB3F89..
4 8F7223.. - 0 0 - 4 A99DD6..
5 DFE44C.. - 1 0 - 5 BAES54C..
6 B7346D.. 8F7223.. 0 1 2 6 646BA9..
7 DAA366.. - 0 0 - 7 36EF8D..
8 5D55D1.. - 2 0 - 8 304FAO0..
9 FBB5F1.. B65F3B.. 0 1 4 9 ED8868..
10 3709BA4.. B7346D.. 2 1 3 ///’ 10 122447..
11 3709BA4.. CBCDY94.. 0 1 11 = 11 CFO02A1..

Y DFE44cC.. 0 1

DAA366.. 0 1

Fig. 5.

An example of mapping a virtual block index into physical index via hmap and pmap inside the FragmentVault, also illustrating the hash table

mechanism used. Blocks with the same content (10 and 11) are mapped to the same physical sector O in the picture.

if (rgend >= n) // wrap
rgend = 0;
}
}
hmap[i] = h; // set it

J = find_by_hash (h);

if (j != NOT_FOUND) ({
pmap[j].pcnt++; // counter
return; // done!

}

s = slot (h); //

pmap[s].scnt++; //

j = s;

while (pmap[j].pcnt > 0) {
if (++3 >= pmapsiz) // wrap

j = 0;

our slot
new

}

pmap[j].md = h; //

pmap[j].pcnt = 1; //

// do NOT touch scnt!

pmap[j].rngglrgtop++];

if (rgtop >= n) // wrap
rgtop = 0;

set the hash
usage=1

III. PERFORMANCE ANALYSIS

In FragmentVault, the read operation is a simple table
lookup and causes minimal effect on performance. The write
operation involves a hash function computation and an O(1)
insertion algorithm. Since the algorithm eliminates a large
proportion of media I/O required in the typical usage, there
are significant speedups in write operations, especially with
storage devices with relatively slow write speeds. The commu-
nication bandwidth required is minimal (less than 1 %) when
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compared to device I/O or protocols suchs as the Network File
System [12].

To estimate the storage requirements in FragmentVault, we
give the ratio of the additional data structures to the actual
stored data in our prototype implementation:

hmap 16 Bytes
pmap.md 16 Bytes
pmap.pcnt 8 Bytes
pmap.scnt 8 Bytes
pmap.ploc 8 Bytes
pmap total 40 Bytes
rngq 8 Bytes
. 1641.2x40+48 .
Fraction LOELECA0EE ~ 1.758%

However, probability that search count should exceed c
when pmap expansion factor 1.2 is used is given by 1.27°.
Hence only one byte is sufficient for scnt storage on essen-
tially any future system as 1.272°6 ~ 2767 By using 16k
blocks and 32-bit addressing (max capacity 64 TB), and 72-
bit hashes, the fraction can be reduced to 0.207%; 2.1 MB
of tables in FragmentVault per each GigaByte stored on the
removable device.

IV. SECURITY ANALYSIS

Finally, we will present short security arguments for
TWOVAULT. These can be extended into security proofs in
many realistic security models.
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A. Confidentiality

In [13] Rogaway develops a tight security proof for
XEX/XTS showing that if the underlying AES block cipher
is secure against a powerful chosen plaintext/ciphertext adver-
sary, so is the resulting XEX/XTS mode of operation. We note
that AES has been approved by NSA to carry data up to Top
Secret level in Governmental Use. We apply the XTS mode
using the hash of the plaintext message as part of the tweak.
This extra layer of protection increases the diffusion from the
input bits across the entire allocation unit “block™.

B. Integrity

Our solution provides strong integrity protection for stored
data using the RIPEMD-160 cryptographic hash. Most of the
traditional disk encryption systems do not provide any integrity
protection; random manipulation of ciphertext will not be
detected, but simply be visiple as corrupted “nonsense” when
decrypted.

C. Access Control

In traditional encrypted filesystems the access to data is
dependent only on a single user-specified key. In our solution
on-line authentication is required to access each sector of
envaulted data. Therefore off-line dictionary attacks are simply
not feasible. Advanced access control mechanisms such as
security tokens or smart cards can be used to authenticate the
SSL/TLS connection, and all access to the device is traceable
by the FragmentVault’s audit trail.

D. Selective Deniability

The TWOVAULT system provides selective deniability, even
in forensic analysis. It can be seen that it is possible to hide
data on the drive in a way that prevents the very existence of
certain hidden volumes to be revealed even if FragmentVault
authentication is successful. However, the data is not deniable
to the organization that controls FragmentVault and owns
the device. This was one of the original design criteria of
TWOVAULT.
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