4" INTERNATIONAL 4 ULUSLARARASI .
INFORMATION SECURITY & CRYPTOLOGY Iy [Key BILGI GUVENLIGI ve KRIPTOLOJI

CONFERENCE

KONFERANSI

A Proposal for Modular Multiplication

Ali Sentiirk and Mustafa Gok
Department of Computer Engineering
Cukurova University Balcali, 01330, Turkey

Abstract—Modular multiplication is an important operation
used in cryptography. This paper presents a novel modular
multiplication algorithm that uses mainly multiply-accumulate
operation. The proposed algorithm uses a small-size look-up table
that can be stored into a general-purpose processor’s cache. The
algorithm can be used in any microarchitecture that has high-
performance multiply-add hardware units in their datapaths.

Index Terms—RSA algorithm, modular multiplication.

[. INTRODUCTION

RSA and eliptic curve cryptography algorithms mostly
rely on modular multiplication [1], [2], [3]. RSA algorithm
encrypts a plain text 7" as T”mod M where E is the public
key and M is a large modulus. RSA decrypts a cyphertext,
C, as CPmod M where D is the private key. Since the
exponentiation operation can be performed by executing a
series of modular multiplications, the efficient execution of this
operation improves the performance of the algorithm. Direct
computation of the modular multiplication requires one mul-
tiplication and one division operations. To compute modular
exponent, most algorithms use the result of the modular multi-
plication iteratively which causes a data dependency. Because
of the data dependency, hardware may waste many cycles if a
division instruction is used in the computation. The previous
work favored the Montgomery’s algorithm [4], since it does
not require trial divisions. Over the years it is also accepted
that the Montgomery’s algorithm is the best fit for hardware
implementations and significant research effort is dedicated on
efficient hardware implementation of this algorithm [5], [6],
[7]. Efficient hardware implementations are important because
they decrease the time needed for the decryption of the cipher
by brute force. To make brute force attacks difficult, the
preferred bit sizes for the modulus, public key, and private key
are increased. Recently, applications that use 1024 to 2048
bit sizes have come to scene. On the other hand this trend
introduces an important drawback. Public users do not have
special hardware for cryptography applications and general
purpose processors do not have arithmetic units that can
directly operate on large operands. A strategy to process the
large operand sizes is dividing the operand into sub-operands
equal to the processor’s word size and operating on them and
combining the sub-results to get the final result. Though this
method causes significant performance degradation, it is the
only choice if there is no special hardware support.

Modern general purpose processsor architectures have mul-
tiple high-performance multiply and multiply-add units in
their datapaths due to extensive use of this operation in
all kinds of applications. Thus, significant research effort is
dedicated to decrease the latency of these instructions. For

Bildiriler Kitabi

example, current Intel Core Duo processor family that uses
65nm technology has a 32-bit integer multiply instruction
with 3 cycle latency whereas the addition instructions in
this processor family have 1 cycle latency [8]. Including
popular Montgomery algorithm most modular multiplication
algorithms rely on addition instruction. This study presents
a modular multiplication algorithm that uses multiplication
operation to fill this gap. The rest of the paper is organized as
follows: Section 2 presents the proposed algorithms, Section
3 discusses the efficiency of the algorithm. Section 4 presents
the conclusion.

II. THE PROPOSED ALGORITHM

Modern general purpose processsor architectures have mul-
tiple high-performance multiply and multiply-add units in their
datapaths. The proposed algorithm uses these units to perform
modular multiplication for large moduli. The steps of the
proposed algorithm are given below.

Algorithm
Assume A and B are two n-bit numbers and M is the moduli.

e Multiply A and B, P = A - B. Perform @ = W(1)
where () is used to accumulate modular equivalent of
the constant values that are discarded in this step. W (1)
is obtained from a look-up table (LUT) as W(l) =
LUT(Pgpsk—1)n). The LUT has 2* rows where each
row contains an n-bit precomputed Py, 4 j—1).,) mod M
value.

o Testif PL(1) = Py, 1.(n4x is equal to zero, if the test
fails, do (PL1 - W(2)) + P(,—1).0 where and W(2) =
LUT(2%), otherwise, go to the final step.

« Repeat computation until PL(i+1) = 0 when this occurs
sum the value of the accumulated Q with PL()(,,—1).0
to get the final result.

The flow chart of the algorithm is given in Figure 1. The
algorithm requires pre-computation of moduli values for a
selected range of values as explained above. These elements
are computed only once for each new moduli. An important
challenge is the size of the look-up tables since very large
look-up tables create memory bottleneck. However, for prac-
tical operand sizes look-up tables can be small enough to fit
in L1 caches. In the worst case, the algorithm computes the
modular multiplication in [n/k] iterations and requires one
multiply-add, one addition and one access to LUT for each
iteration. A numerical example that demonstrates the worst
case for an 8-bit moduli is given below.

A? = (TF)3s mod (81)56

is computed using the presented algorithm. To demonstrate
the algorithm more clearly hexadecimal representation of the

Proceedings

06-08 May Mayis 2010 » Ankara / TURKIYE
403

4" INTERNATIONAL 4 ULUSLARARASI .
INFORMATION SECURITY & CRYPTOLOGY Iy [Key BILGI GUVENLIGI ve KRIPTOLOJI

CONFERENCE

(Start |
N g

P=AxB
Q=W(1)
W(2)=LUT

No

PL(I)xW(i+2)
PL(i+1)=PL(i)
ntk=l:n

‘ No
| Yes

i

Q=Q+PL(i)
n-1:0

v

Fig. 1. The Flow Chart.

numbers are used.
Example
e Step I:
P =A% =3F01
BL] =0F
Q=W1=7B,W2=179.
. Slﬁ‘.‘p 2:
(PL1-W2)+ P—1y0 = (F-79) 4+ 01 = 718
W3=73,W4=0
PL2=0
« Step 3:
Q=Q+ W3 mod 81 =(7TB+T73) mod 81 =6D
Q = (Q + PL1(;_1):0) mod 81
= (6D + 18) mod 81 =4

IT1I. ANALYSIS OF THE ALGORITHM

Most modern processor’s support 32-bit operand sizes. The
proposed algorithm can be adjusted to perform 32-bit modular

Bildiriler Kitabi

KONFERANSI
TABLE 1
A COMPARISION OF MODULAR MULTIPLICATION METHODS
Operation M.A. [4] | P. A,
Add 64 4
Multiply-Add - 4
Shift 32 -
LUT Access - 4

multiplication. As it is stated before, the number of the
required iterations to generate the result mainly depends on
the size of the LUT. For 32-bit applications, to keep the look-
up table small enough to fit in a processor’s cache a look-up
table that has 256 rows with 32-bit row size is used. Total
size of the LUT is 8KBs which can easily be stored even in
an L1 cache of a modern general purpose processor. In this set-
up, the proposed algorithm computes the result in 32/8 = 4
iterations when the worst case occurs. Table 1 presents number
of operations required to compute a 32-bit modulus with the
proposed method and with Montgomery’s method. In both
methods, there is a data dependency between each iterations.
This means the operations cannot be executed in parallel.
An estimate for processors that has 65 nm Intel Core is
given based on the worst case latencies for the operations [8].
The latency for a memory access is accepted as one cycle
assuming the look-up table is stored in L1 cache. The latency
for add and shift operations are one cycle, the latency for
multiply instruction is three cycles. There is a packed multiply-
add instruction (PMADDWD) among MMX instructions for
this family with three cycles latency. Based on these latency
values Montgomery algorithm computes the product of 32-
bit modular multiplication in 96 cycles whereas the proposed
algorithm generates the same result in 20 cycles. On the other
hand it should be noted that there is extra overhead for the
proposed algorithm due to the computation of the LUT values.
A fair concern about the applicability of the algorithm may
arise considering the large operand sizes used in practice such
as 1024 bits or 2048 bits. Since the available operations are
dictated by the processor’s word size, the large size operands
have to be split into word size suboperands. For example a
128-bit operand must be splitted into four 32-bit operands, to
be processed which is true for all algorithms.

IV. CONCLUSION

This paper presented a straightforward algorithm to compute
modular multiplication. The algorithm exploits the current
improvements in the performance of multiply-add imple-
mentations. Preliminary analysis shows that it has potential
to speed-up the computation of modular multiplication in
general-purpose architectures. The proposed algorithm can be
combined with Montgomery’s algorithm in order to increase
the instruction level parallelism, since these two algorithms use
different resources. Planned future work will search the direct
applicabality of the proposed algorithm on hardware and more
specifically on FPGA platforms.

Proceedings 404

06-08 May Mayis 2010 » Ankara / TURKIYE

4" INTERNATIONAL 4 ULUSLARARASI .
INFORMATION SECURITY & CRYPTOLOGY TUIKEV BILGI GUVENLIGI ve KRIPTOLOUI
CONFERENCE KONFERANSI

REFERENCES

[1] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, p. 126, 1978.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203-209, 1987.

[3] V. Miller, “Use of elliptic curves in cryptography,” in Advances in
CryptologyCRYPTOSS Proceedings. Springer, 1986, pp. 417-426.

[4] P. Montgomery, “Modular multiplication without trial division,” Mathe-
matics of computation, vol. 44, no. 170, pp. 519-521, 1985.

[5] S. Eldridge and C. Walter, “Hardware implementation of Montgomery’s
modular multiplication algorithm,” [EEE Transactions on Computers,
vol. 42, no. 6, pp. 693-699, 1993,

[6] E. Brickell, “A survey of hardware implementations of RSA.” in Advances
in CryptologyCRYPTOSY Proceedings. Springer, 1986, pp. 368-370.

[7] N. Nedjah and L. Mourelle, “Three hardware architectures for the
binary modular exponentiation: Sequential, parallel, and systolic,” /EEE
Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 3,
pp. 627-633, 2006.

[8] “Intel 64 and IA-32 architectures optimization reference manual,” Intel
Corporation, November 2009,

Bildiriler Kitabi 06-08 May Mayis 2010 « Ankara / TURKIYE
Proceedings 405

