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Abstract—Statistical tests for randomness play an important
role in cryptography since many cryptographic applications
require random or pseudorandom numbers. In this study, we
introduce an alternative approach to Maurer’s Universal Test.
This approach allows us to test short binary sequences as small
as 66 bits and to choose slightly larger block sizes. Moreover, it
does not have an initialization part and requires less time to test
a binary sequence.
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I. INTRODUCTION

ANDOM numbers have many uses in cryptography such

as keystreams of one-time pads, secret keys of symmetric
cipher systems, public key parameters, session keys, nonces,
initialization vectors and salts. Hence statistical randomness
tests are of great importance for cryptographers for testing the
security of cryptographic applications.

There are various statistical test suites in the literature such
as NIST [2] which is used as an evaluation tool in the AES
selection process, Knuth [8], DIEHARD [5], TestUO1 [7], and
Crypt-X [6], all of which consisting of a number of statistical
tests. In this study, we introduce a new approach to Maurer’s
Universal Test [1] which is one of the 16 tests used in NIST
statistical test suite.

Maurer’s Universal Test has an initialization part and most
of the blocks in this segment has no effect in the test statistic.
Moreover, in NIST statistical test suite, block sizes between 6
and 16 are recommended, where the lower bound makes the
test inapplicable for binary sequences shorter than 387,840
bits. However, our approach does not contain an initialization
part, it can be used to test short sequences as small as 66
bits and block size can be chosen larger for long sequences.
Moreover the new approach requires slightly less time to test
a binary sequence.

The outline of the paper is as follows. In section II, we
briefly summarize Maurer’s Universal Test and introduce our
approach in section III. In section IV, we present the advan-
tages of this approach and in the last section, we conclude our

paper.
II. MAURER’S UNIVERSAL TEST

Maurer’s Universal Statistical Test which is introduced by
Ueli M. Maurer in 1992 in [1] measures per-bit entropy of
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a stream which is considered as the correct quality measure
for a secret key source in a cryptographic application. The
test is designed to detect any one of the very general class of
statistical defects that can be modeled by an ergodic source
with finite memory M where M is less than or equivalent to
the block size L.

Let {a,} = a1,as,...,ay be a binary sequence of length
N. To apply the test, we partition this sequence into adjacent
non-overlapping blocks of length L and compute the integer
values of these blocks and obtain a new sequence {t¢,} =
ty,to, ...t where k = L%j and ¢; € {0,1,2,...,2% —1}.
The remaining bits at the end of the sequence are discarded.

The first @ blocks of {t,} is called the initialization part
and the remaining K blocks are called the test part where
K+@Q = |n/L|. For every block in the test part, we calculate
the distance of that block to its previous occurrence. That is,
the distance r for the block ¢; means ¢; and t;_, are the same
and the integers between them are different than ¢;. These
calculations can be done efficiently by scanning the sequence
{tn} once and storing the places of the last occurrences of
blocks in an array of size 2”. If we denote these distances by
¢;, the test statistic f;, is

1 K
fn = ?leloga Ci- Q)

The reference distribution for the test statistic is the half-
normal distribution. The p-value is obtained as follows:

0.8 32\ K—3/L
variance(L)
— oy — ) 3
o=c % 3)

fn — expectedvalue(L) D
N @

If the obtained p-value is less than the probability of type I
error, which is a small value between 0.01 and 0.001, we
assume that the sequence is obtained from a non-random
resource.

An efficient and clear implementation of the complementary
error function er fc can be found in [3]. The values of vari-
ances and expected values are given in Table IV at Appendix

p — value = erfc(
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III. THE NEW APPROACH

Let {a,} = a1,as,...,an be a binary sequence of length
N. By partitioning this sequence into adjacent non-overlapping
blocks of length L and computing the integer values of these
blocks, we obtain a new sequence {t,,} = t1,t,...,t; where
k=[%]andt; € {0,1,2,...,2% —1}. The remaining bits at
the end of the sequence are discarded. Moreover, from {t¢,}
we obtain yet another sequence {c,} where ¢; is the distance
between the integer ¢; and its next occurrence. If the integer ¢;
is its final occurrence in the sequence {¢,, }, we assign the value
0 to ¢;. Thus the sequence {c, } also has length k. Note that in
this approach we do not use an initialization part. Hence when
calculating the distances, considering the previous occurrence
of a block, instead of its next occurrence does not change the
test statistic.

If ¢; is r for some 4, this means that ¢; and ¢, are the same
integers and the integers between them are different than ¢;.
The probability of such a situation is

(28— 1
25

Thus the probability for ¢; = 0 is obtained in the following
way:

prob(c; =) = (5)

k (2L i—1

prob(c; =0)=1— Z (2_7;)2 (6)

Note that since tj, is the last element of the sequence {t,},
cr, must be 0. Similarly ci_; is either 0 or 1. Thus a distance
r in the sequence c¢; can be observed only in & — r different
places. Hence the expected number of appearance of the value
r in the sequence {c,} is

(2L _ 1)7”41

E(r)= (k- T)i(gL)r .

)

Let d; denote the number of appearance of the value i in
the sequence {c, }. We apply the test by calculating d;’s and
performing x? of goodness of fit test to d; and E(i) values.

The number of appearance of 0 in the {c,} sequence is
equivalent to the number of distinct integers in the {¢,}
sequence. To apply the test, we require that every integer in
the set {0,1,...,2% — 1} should appear in {t,,} at least once.
Thus we will consider the cases when the probability of every
possible integer values not appearing in {t,,} is less than 1074,
Hence to perform the test, the largest block size L that can
be chosen for a {t,,} sequence with length k is the largest L
value satisfying the following equation:

oL _1\F /oL _9\* 1\F
17< o )f( o >77<2—L> > 0.9999 (8)

The largest L values satisfying the above inequality are the
suggested block sizes and are given in Table I.

We apply x2 of goodness of fit test to obtain p-values. The
degree of freedom d is k — 1 and x? value is

k ()2
XZ _ Z (dz E(Lj)( )) 9)

i=1
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TABLE I
LARGEST POSSIBLE BLOCK SIZES
Sequence Length Block Size
66 < n < 206 2
207 <n <571 3
572 <n <1,454 4
1,455 < n < 3,509 5
3,510 <n <8,224 6
8,225 <n < 18,839 7
18,832 < n < 42,407 8
42,408 < n < 94,269 9
94,270 < n < 207,448 10
207,449 < n < 452,663 11
452,664 < n < 980, 823 12
980,824 <n < 2,112,599 13
2,112,600 < n < 4,257,059 14
4,257,060 <n < 9,657,775 15
9,657,776 < n < 20,522,858 16
20,522,859 < n < 43,460,243 17
43,460,244 < n < 91,749, 460 18
91,749,461 < n < 193,156, 859 19
193, 156, 860 < n < 405,629, 468 20
405, 629,469 < n < 849,890, 425 21
849,890,426 <n < 1,777,043,709 22

and we use the complement of incomplete gamma function
gammyg (see [3] for an efficient and clear implementation) to
obtain the p-value where

2
p — value = gammg ((z, X—) (10)
2" 2

If the obtained p-value is less than the probability of type I
error, which is a small value between 0.01 and 0.001, we
assume that the sequence is obtained from a non-random
resource.

Since we assumed that every possible integer values is ob-
served in the sequence {t, }, before testing a binary sequence,
we check that if the corresponding {¢,} sequence is as we
desired. If it is not, the test will not be applied to that binary
sequence.

IV. COMPARISON

In Maurer’s Universal Test, the initialization segment con-
tains 10 - 2% bits and most of the blocks of this part have no
effect in the test result. This is due to the fact that only the
place of the last occurrence of an integer in the initialization
part is considered in the test segment. However, there is no
initialization part in the presented method which allows us
to test the whole sequence without wasting any parts of the
sequence.

Another important difference between the two methods is
the length of the sequences that can be tested. In Maurer’s
Universal Test, sequences which are shorter than 387, 840 bits
cannot be tested. However, our approach can be applied to test
sequences as short as 66 bits.
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It is important to notice that Maurer’s Universal Test re-
quires a long sequence with initialization part of 10 - 2%
blocks and test part of 1000 - 2L blocks which makes the test
not suitable for block size length larger than 16. In our new
method, the block size can be taken larger than 16 for long
sequences but notice that the distances are stored in an array
of size 27 in both methods. Hence the test becomes infeasible
for large L.

Yet another difference is the speed of the both algorithms.
Since there are no logarithms involved in our method, it
requires less time to test a binary sequence. We measured the
speed of the tests by testing 1000 binary sequences of length
800000 bits on a PC with an Athlon 64 3700+ processor at
2.2 GHz, 3 GB of RAM and running Windows XP. These
sequences are taken from [5] and we used the same block
size for both of the tests. Results are given in the Table II.

TABLE I
THE TIME COMPARISON OF THE TWO TESTS BASED ON 1,000 RANDOM
SEQUENCES OF LENGTH 800,000 BITS

102 seconds
87 seconds

Maurer’s Universal Test
New method

The linear relationship between the two tests can be
seen from Pearson product-moment correlation coefficient [4],
which is a value between —1 and 1. Correlation between the
variables gets stronger when the coefficient comes closer to
—1 or 1. However, the correlation coefficient 0 does not mean
that the variables are uncorrelated since it measures only the
linear relationship. By using the p-values we obtained from
the speed comparison of the tests, we calculated Pearson’s
coefficient as 0.3.

V. CONCLUSION

In this study, we proposed an alternative method for apply-
ing Maurer’s Universal Statistical Test. The comparison of this
approach and Maurer’s Universal Test is made in Section IV.
Although the idea behind the both methods are the same, the
differences in the test structure (especially the initialization
part of Maurer’s Universal Test) result in different p-values
for a binary sequence.

Our approach does not use an initialization part and it can be
used to test short binary sequences. It allows us to work with
larger block sizes and it requires less time to test a binary
sequence. The linear relationship between the two tests can
be seen from Pearson product-moment correlation coefficient
which is calculated in section IV.

APPENDIX A
MAURER’S UNIVERSAL TEST PARAMETERS
The number of blocks used in the initialization part of
Maurer’s Universal Test and the block sizes are given in
Table III. The expected values and variances are given in
Table IV.
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TABLE III
PARAMETERS IN NIST STATISTICAL TEST SUITE
n L Q=10 -2F
> 387,840 6 640
> 904,960 7 1,280
> 2,068,480 8 2,560
> 4,654,080 9 5,120
> 10, 342, 400 10 10, 240
> 22,753,280 11 20,480
> 49,643, 520 12 40, 960
> 107,560,960 | 13 81,920
> 231,669,760 | 14 163, 840
> 496,435,200 | 15 327,680
>1,059,061,760 | 16 655, 360
TABLE IV
EXPECTED VALUES AND VARIANCES
L | expectedvalue | variance
6 5.2177052 2.954
7 6.1962507 3.125
8 7.1836656 3.238
9 8.1764248 3.311
10 9.1723243 3.356
11 10.170032 3.384
12 11.168765 3.401
13 12.168070 3.410
14 13.167693 3.416
15 14.167488 3.419
16 15.167379 3.421
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