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Rings of Low Multiplicative Complexity and Fast
Multiplication in Finite Fields F2N

Murat Cenk1 and Ferruh Özbudak2

Abstract— We survey the rings of low multiplicative complexity
and the redundant representation of finite fields. The construction
is originally due to Ito and Tsujii [3]. We give the important
results of Silverman’s works in [1], [2]. Moreover, we note that
the fields constructed with Silverman’s method are not suitable
for elliptic curve cryptography while Silverman suggests those
curves can be used in elliptic curve cryptography.

Index Terms— Finite fields, redundant representation

I. INTRODUCTION

F INITE field multiplication is widely used in many areas
such as cryptography and coding theory. For example,

the field operations are used in key exchange, encryption,
signing and authentication. The binary field F2N is especially
used for computer implementation due to the binary structure
of computers. In this paper, we give an overview of the
important representation of finite fields so called redundant
representation. Moreover, we discuss the application of the
redundant representation in F2N . This paper is a survey of
papers [1], [2].

In section 2 we give the basic definitions and notations.
Examples are given in Section 3 to show the concepts from
Section 2. Fields and rings of low complexity are given
in the next section. In Section 5 the application part, fast
multiplication in finite fields F2N is given. Finally, selection
of fields F2N is presented in Section 6.

II. DEFINITIONS AND NOTATIONS

In this section we give the basic definitions and notations
that are used throughout the paper.

Let k be a field and R be a k-algebra with a finite basis
B = {x1, x2, ..., xr} as k-vector space. The multiplication law
in R is given by the equation

xixj =

r∑

k=1

λk
ijxk, 1 ≤ i, j, k ≤ r,

where λk
ij ∈ k. The complexity of the basis B is defined to be

C(B) = 1

r
#{(i, j, k) : λk

ij �= 0}

and complexity of R is defined as

C(R) = min{C(B) : B is a k-basis for R}.
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For example, the normal basis B of the finite field F2N is
well known to have the complexity C(B) ≥ 2n−1. For some
certain fields the equality C(B) = 2n− 1 is obtained. In this
case the normal basis B is called optimal normal basis or ONB.
We refer to [6], [7] for the details.

An useful property of a basis is the symmetry so that the r3

multipliers λk
ij are determined by the r2 multipliers λ1

ij using
a simple transformation. It is said that B is a permutation basis
if there are permutations σk, τk ∈ Sr, 1 ≤ k ≤ r such that

λk
ij = λ1

ij for all i, j, k.

If a =
∑

aixi and b =
∑

Bixi and if B is a permutation
basis as above, then

ab =

r∑

i,j,k=1

aibjλ
k
ij =

r∑

k=1

⎛
⎝

r∑

i,j=1

aσ−1
k

bτ−1
k

λ1
ij

⎞
⎠xk.

Note that if B is permutation basis, then its complexity is
determined by the λ1

ij’s,

C(B) = #{(i, j) : λ1
ij �= 0}.

In order to obtain smaller multiplicative complexity than
ONB complexity one can begin with a quotient field K of R
and lift the elements of K to elements of R. All computations
can be operated in R and go back to K if the complexity of
R is smaller than K. Let ρ(R) be defined as

ρ(R) = dimkR− max{dimkK : K is a quotient field of R}.
It would be better ρ(R) to be small for practical applications,
which means that R has a large quotient field. Obviously,
ρ(R) = 0 if and only if K = R.

III. EXAMPLES

In this section a number of examples are given to show the
concepts from Section II.

Example 3.1: Consider the ring R = k[x]/(xr). Let the set
B = {1, x, x2, ..., xr−1} be a basis of R. The multiplication
law is given by xixj = xi+j if i + j < r, and xixj = 0 if
i+ j ≥ r, so

λk
ij =

{
1 if i+ j = k < r,
0 otherwise.

So one can obtain the complexity

C(B) = 1

r

∑

0≤i,j<r,i+j<r

1 =
r + 1

2
.

It is seen that complexity can be rational. Note that the only
field of R is k. Hence ρ(R) = r − 1.
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Example 3.2: Let A ∈ k, A �= 0, and R = k[x]/(xr − A)
with basis B = {1, x, x2, ..., xr−1}. Then

xixj =

{
xi+j if i+ j < k

Axi+j−r if i+ j ≥ r,

λk
ij =

⎧
⎨
⎩

1 if i+ j = k,
A if k = i+ j − r,
0 otherwise.

Then the complexity of B becomes

C(B) = r,

because there is only one k with λk
ij �= 0 for each (i, j). Now,

ρ(R) can be computed. Let xr − 1 = f1f2...fs be irreducible
factors and let di = degfi. Since k[x]/(fi) is a quotient field
of R of dimension di, it is seen that

ρ(R) = r − maxdi.

Note that if A = 1 then

xr − 1 = (x− 1)(xr−1 + xr−2 + ...+ x+ 1).

If the polynomial Φ(x) = xr−1+xr−2+...+x+1 is irreducible
in k[x] then ρ(R) = 1. Moreover, we know that Φ(x) is
irreducible in k[x] if and only if r is prime and q, number
of elements in k, is a primitive root in Z/rZ. We will see
details of this situation for k = F2 in next section.

Example 3.3: Consider the ring R = k[x]/(xr − αx − β)
for some α, β ∈ k∗ and the basis B = {1, x, x2, ..., xr−}.
Then

xixj =

{
xi+j if i+ j < r
αxi+j−r+1 + βxi+j−r if i+ j ≥ r.

So one can obtain the complexity as

C(B) = 3r − 1

2
.

Note that this result is better than a normal basis which
has multiplicative complexity greater than or equal (2r − 1).
However normal basis has many advantages such as squaring
complexity and permutability.

Example 3.4: Consider k = F2, Φ(x) = xr−1+xr−2+...+
x+1, and the ring R = F2[x]/(Φ(x)). Note that R is subring
of F2/(x

r+1 − 1) for which standard basis has complexity
r + 1. Multiplication rule in R is given by the rules

xixj =

⎧
⎨
⎩

xi+j if i+ j < r
1 + x+ ...+ xr−1 if i+ j = r
xi+j−r−1 if i+ j ≥ r.

The r pairs (i, j) for which r of the λk
ij are non-zero and the

remaining r2 − r pairs (i, j) have exactly one non-zero λk
ij

and therefore

C(B) = 1

r
(r2 + r2 − r) = 2r − 1.

As it is seen the multiplicative complexity of B is twice as
large as the ring of dimension one higher that contains R.

Example 3.5: Let R1 and R2 be rings of dimensions r1
and r2 over k, respectively. Let B1 and B2 be k-bases with

C(Bi) = C(Ri) for i = 1, 2. Then the product ring R =
R1×R2 of dimension r = r1+ r2 has a natural product basis

B = {(y, 0) : y ∈ B1} ∪ {(0, z) : z ∈ B2}.
Since (y, 0)(0, z) = (0, 0), the complexity of the basis B is
given by the formula

rC(B) = r1C(B1) + r2C(B2) = r1C(R1) + r2C(R2).

Then it follows that

C(R1 ×R2) ≤
r1C(R1) + r2C(R2)

r1 + r2
.

Example 3.6: The product basis of R1 × R2 described in
Example 3.5 has the property xixj = 0. In the case where
R1 = k, this property is eliminated by forming twisted product
basis

B = {(1, 1) : y ∈ B1} ∪ {(0, z) : z ∈ B2}.
This gives

C(R) =

(
1− 1

r

)
(C(R2)− r2) + r.

The intermediate steps can be seen in [2].

IV. FIELDS AND RINGS OF LOW COMPLEXITY

In this section, the main result in [2] will be given. Firstly
the theorem which describes all field extensions of a finite
field for which the complexity is equal to the dimension. Next
a complete classification of all rings R/k with low complexity
C(R) ≤ dimkR and a quotient field of dimension dimkR− 1
are presented. The proof of theorems are in [2].

Theorem 4.1: Let k be a field with q elements and let K/k
be afield extension of degree r. Then C(K) = r if and only
if the following two conditions are true:

(i) Every prime dividing r also divides q − 1.
(ii) Either 4 � r or 4 | q − 1.

Further, if (i) and (ii) are true, then K is isomorphic to
k[x]/(xr −A) for some A ∈ k such that xr −A is irreducible
in k[x].

Theorem 4.2: Let k be a field with q elements and let R
be a k-algebra of dimension r satisfying

ρ(R) = 1 and C(R) ≤ r.

Then R has one of the following forms:
(i) R ∼= k[x]/(xr − 1) where r is a prime and q

is a primitive root modulo r. The basis B =
{1, x, x2, ..., xr−1} is a permutation basis for R
satisfying C(B) = C(R).

(ii) There is a field K/k so that R ∼= k×K, and the basis
B for R satisfying C(B) = r is a twisted product
basis as given in Example 3.6. Further C(K) =
dimkK, so in particular K ∼= k[x]/(xr−1 − A) is
a field extension of the type described in Theorem
4.1.

(iii) There is a field K/k so that R ∼= k × K, and the
basis B for R satisfying C(B) ≤ r is a product basis
as in the Example 3.5.

(iv) r=2 and R ≡ k[x]/(x2).
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Only in case (i) does R have a permutation basis B satisfying
C(B) ≤ r.
Note that the rings in Theorem 4.2 (i) are of the particular
interest for practical implementations. In the next section, the
case k = F2 and R = F2 × F2r−1 is analyzed.

V. FAST MULTIPLICATION IN FINITE FIELDS F2N

In this section we give an application of Theorem 4.2. It is
described for performing computations in a finite field F2N by
embedding it a larger ring R where multiplicative complexity
of R is N + 1 which is approximately twice as efficient as
optimal normal basis multiplication.

The field F2N can be generated as a quotient F2[x]/(Φ(x)),
where

Φ(x) = xN + xN−1 + xN−2...+ x+ 1.

It is known that the polynomial Φ(x) over F2 is irreducible if
and only if

• p = N + 1 is prime,
• 2 is a primitive root modulo p.

The second condition says that

2N/� � 1 mod p, for every prime � dividing N.

When the field F2N represented in standard way as the set
of polynomials modulo Φ(x) it is seen that F2[x]/(Φ(x)) is
a subring of the ring of polynomials modulo xp − 1, where
N = p− 1. In other words,

F2[x]

(xp − 1)
∼= F2N × F2.

Note that this is an isomorphism of rings, not fields. Let Rp

denote the ring of polynomials modulo xp − 1,

Rp =
F2[x]

(xp − 1)
.

An element of Rp can be represented by

a = aNxN + aN−1x
N−1 + ...+ ax + a0

and it can be also represented by a list

a = [aN , aN−1, ..., a1, a0]

where ai ∈ F2 for 0 ≤ i ≤ N.
Remark 5.1: Note that the method constructed above can

be generalized for fields FqN for any prime power q provided
p = N + 1 is prime and q is primitive root modulo p. The
generalization is given in [4].

Now it is given the multiplicative complexity of the ring Rp.
The complexity of the basis B = {1, x, x2, ..., xp−1} for the
ring Rp is clearly C(B) = p since λk

ij = 1 where λk
ij is given

in Section II. Therefore Rp has complexity p = N + 1 while
the complexity of optimal normal basis for F2N is 2N − 1.
Therefore, it is better to perform F2N multiplication by first
moving to Rp and then doing the multiplications in Rp.

The lift operations between F2N and Rp are performed as
follows: An element of F2N and Rp are represented by

[aN−1, ..., a1, a0], [aN , aN−1, ..., a1, a0].

The extra bit in Rp is called ghost bit. In order to do a
computation in F2N we first move Rp then do all computations
in Rp and finally go back to F2N . Note that movement between
F2N and Rp is fast, at most a single complement operation.

More clearly, the map between F2N and Rp is given by

F2N −→ Rp

a = [aN−1, ..., a1, a0] −→ [0, aN−1, ..., a1, a0].

Inverse map is given by

Rp −→ F2N

[aN , aN−1, ..., a1, a0] −→
{

[aN−1, ..., a1, a0] if aN = 0
∼ [aN−1, ..., a1, a0] if aN = 1

where ∼ means take the complement of every bit.

VI. SELECTION OF FIELDS F2N

The first condition in choosing F2N is that 2 is a primitive
root modulo p and p = N +1 is prime since this ensures that
the cyclotomic polynomial

Φ(x) = xN + xN−1 + ...+ x2 + x+ 1 =
xN+1 − 1

x− 1

is irreducible in F2[x].
Some of the values of p, where N = p − 1 are

{101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269,
193, 653, 659, 661, 677, 701, 709, 757, 773, 787, 821, 829, 1019,
1061, 1091, 1109, 1117, 1123, 1171, 1187}. As it is seen there
are limited value of N. In paper [1] it is said that for elliptic
curve cryptography one might take N to be one of the values
162, 172, 178, 180 or 196. However we want to note that
those values are not secure since the composite extension
fields are weak due to weil-descent attack [5]. In fact, since
the value p is prime and N = p− 1 is always even, the fields
constructed in this method are not suitable for elliptic curve
cryptography.

On the other hand, one can use the field in F2N in Diffie-
Hellman key exchange or ElGamal system. In this case, the
multiplicative group F∗

2N is a cyclic group of order 2N − 1
and if 2N − 1 is the product of small primes then Pohlig-
Hellman algorithm solves the discrete logarithm problem
which provides the security of Diffie-Hellman key exchange
or ElGamal system.

To find the prime divisors od 2N −1, one can start with the
factorization of XN−1 as a product of cyclotomic polynomials

xN − 1 =
∏

d|N
Φd(x),

where Φd(x) is dth cyclotomic polynomial. That is, the roots
of Φd(x) are primitive dth roots of unity,

Φd(x) =
∏

1≤k≤d, gcd(k,d)=1

(x− e2πk/d).

Therefore we have the following relation:

2N − 1 =
∏

d|N
Φd(2),
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so one should find the large prime divisors of Φd(x). For
example, consider the situation, p = 787 and N = 786. Since
786 is divisible by 393 it is seen that 2786 − 1 is divisible by

Φ393(2) =
2393 − 1

(23 − 1)(2131 − 1)
.

One can find the value of Φ393(2) as

Φ393(2) = 36093121 · 51118297 · 58352641 · q,
where q ≈ 2183 is a prime. Hence 2786 − 1 is divisible by the
large prime q.
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