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On Meier-Staffelbach’s Fast Correlation Attack
Esen Akkemik, Orhun Kara, Ayşegül Kurşunlu

Abstract—In this paper, we study the experimental results
of the algorithm given in Meier-Staffelbach’s “Fast Correlation
Attacks on Certain Stream Ciphers” paper. We study the speed
of the attack in terms of the steps executed under fixed keystream
lengths and correlation probabilities for Algorithm B. We also
give a slightly modified version of Algorithm B which can find the
linear feedback shift register outputs from keystreams where the
original algorithm fails. We compare the performances of both
algorithms in some specific cases. Experimental results show that
for these specific cases the new algorithm is superior to the origi-
nal algorithm. We present the correlation probability between the
linear feedback shift register sequence and the resulting sequence
at each step under various probabilities and keystream lengths.
We show that the number of steps decreases by using longer
keystream sequence or higher correlation probability as it is
expected for the correlation attacks.

Index Terms—Correlation attack, Fast correlation attack, Lin-
ear feedback shift register (LFSR), Stream cipher.

I. INTRODUCTION

THE one-time pad (Vernam Cipher) is an encryption
algorithm where a completely random key is xored with

a plaintext to create a ciphertext. Since the key is random
an attacker cannot recover the plaintext from the ciphertext
unless he knows the key. Such an encryption algorithm is
called perfectly secure. Unfortunately, it is not practical to
generate completely random key streams of arbitrary lengths.
Thus, pseudo-random sequences are used instead. One way
to generate pseudo-random sequences is to use the output of
a stream cipher. Linear feedback shift registers (LFSR) are
the basic components of most stream ciphers, since they have
efficient hardware implementations and produce sequences
with good statistical properties.

Combination generators are one of the most common
keystream generators based on LFSRs. Figure 1 shows a com-
bination generator which has m linear feedback shift registers
(LFSR) whose outputs are combined by a nonlinear Boolean
function F with the desired properties [3]. Any keystream
generator having LFSRs as a component is vulnerable to
correlation attacks. This cryptanalytic technique introduced
by Siegenthaler [2] is an example of ”divide-and-conquer”
methods. In the attack the correlation between the LFSR
sequence a and the output sequence z of F , also known
as keystream, is exploited. It is shown in [2] that if the
keystream is correlated with at least one of the LFSR outputs,
then a correlation attack against this (these) LFSR(s) will
significantly reduce the complexity of exhaustive search. For
example, Geffe generator with initial correlation probability
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p = 0.75, Pless generator with p = 0.75 and Brüer generator
with p up to 0.75 have been broken with this attack if the
LFSR length is smaller than 50 [2]. This attack is indeed one
of the most severe analysis for LFSR-based generators.

Correlation attacks are the most common and effective
divide-and-conquer type attacks mounted on keystream gen-
erators. There are several known stream ciphers, which are
shown to be vulnerable to correlation attacks, such as A5/1 of
GSM protocol, E0 of Bluetooth, LILI-128 and Grain.

In 2001 in [7], Ekdahl and Johansson introduced a corre-
lation attack on A5/1. In 2004, Maximov et. al. introduced
another attack on A5/1 [8] which is an improvement of the
attack in [7]. This is a ciphertext-only attack which uses
the redundancy during silence to get some known outputs
from the cipher. Finally, in 2006 Barkan and Biham mounted
correlation attack on A5/1 using conditional estimators [14].
A fast correlation attack on LILI-128 stream cipher is given
in [9]. This attack is an application of the techniques given
in [16] to LILI-128. A fast correlation attack on Bluetooth
algorithm E0 is given In [12]. The authors apply convolution
to the analysis of the distinguisher based on all correlations
and propose an efficient distinguisher resulting from linear
dependency of the largest correlations. In [13], a correlation
based attack applied on the stream cipher Grain is given.
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Fig. 1. A pseudo-random keystream generator

The fast correlation attack is firstly proposed by Meier and
Staffelbach in [1]. In this attack, the keystream z is considered
as a noisy version of the LFSR sequence a. It is assumed
that N bits of the sequence z and the correlation probability
between a and z are known. A necessary condition for this
attack is that the number of tabs of LA is small. In order
to obtain a from z, firstly linear equations are obtained by
using the feedback polynomial. Later, the bits of z are used
in these equations. A new correlation probability is assigned
to each bit by checking whether the bits of z satisfy those
equations or not. If this new probability is high enough,
then it is likely that this particular bit of z is equal to the
corresponding bit of a. Several papers [10], [11], [15] improve
the results of [1]. These algorithms are effective only if the
feedback polynomial is of low weight. In [15], a new method
for the computation of low weight parity checks based on the
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theory of error decoding codes is given. The LFSR sequence
is considered as a codeword of a maximal-length block code.
By applying the decoding of cyclic block codes Penzhorn
develop an efficient algorithm for the computation of low-
weight parity check equations that will be used in Meier-
Staffelbach algorithm. In [10], Mihaljević and Golić proposed
a new algorithm for reconstruction of LFSR sequence given
the keystream. They use the finite state matrix representation
of an LFSR and iterative error correction. This new algorithm
works for large number of feedback taps and for smaller
correlation probability under the condition that large number
of keystream bits is observed. In [11], the authors propose
another technique for fast correlation attack where they use the
keystream bits efficiently by using different iterative decoding
methods.

After the introduction of correlation attacks by using low-
weight parity check codes by Meier and Staffelbach, several
variations of correlation attacks emerged which used differ-
ent codes and decoding algorithms. In 1999, Johansson and
Jönsson suggested to use convolutional codes to increase the
performance of fast correlation attacks [4]. This new version
of fast correlation attack can be applied to LFSRs with any
feedback polynomials. They show that a low weight convo-
lutional code can be found by the code generated from the
LFSR sequences. This convolutional code is decoded by using
a low complexity decoding algorithm. A correctly decoded
sequence will give the output sequence of the LFSR. In [5],
the same authors study the theoretical background of this
algorithm. They find the relationship between the correlation
probability, the length of the keystream, LFSR length and the
code parameters.

After the introduction of convolutional codes in fast corre-
lation attacks, Chepyzhov et. al. introduced another method in
[11]. In this paper, they find another linear code associated
with the LFSR sequence. They calculate the proper parity
checks for the new code. The keystream bits are combined
according to the parity checks, and the probability of each
codeword in the code is calculated. This process corresponds
to ML-decoding. The decoding of the code leads to the initial
state of the LFSR.

Johansson and Jönsson later introduced new algorithms for
fast correlation attacks based on turbo codes in [6]. These algo-
rithms are based on the iterative decoding techniques with the
embedded convolutional codes. The authors identify parallel
embedded convolutional codes by considering the permuted
versions of the code generated by the LFSR sequence. These
codes have the same information sequence, but have different
parity checks. Later, the keystream is used to construct the
sequences that will serve as the received sequences for the
codes determined in the previous stage. These sequences are
then used to find the correct information sequence by an
iterative decoding technique.

In this paper we study the experimental results of Algo-
rithm B given in [1]. We investigate the speed of the algorithm
in terms of the steps executed during the whole process.
We study the speed under different correlation probabilities
and keystream lengths. We observe that the original setting
of Algorithm B cannot deduce the LFSR sequence a for

some specific cases. We propose a new algorithm, a modified
version of Algorithm B, which can deduce a in these cases.In
addition, we show several experimental results regarding to
the performances of both algorithms.

This paper is organized as follows. In Section II the statis-
tical model of the attack is given. In Section III, we give the
details of the two algorithms given in [1]. Also, a modified
version of Algorithm B is given in this section. In Section
IV the experimental results of the original and the modified
versions of Algorithm B are given. The comparison of the
performances of the original and the new algorithms are given
in Section V. We give the summary of the results in VI.

II. STATISTICAL MODEL

Assume that LFSR A (LA) with a length of k and number
of tabs t are given. Let the output sequence of LA be the
sequence a. Recall that a is given by a linear relationship of
the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k (1)

where c(x) = c0 + c1x + c2x
2 + · · · + ckx

k is called the
feedback polynomial of the relation. The sequence z can be
seen as a perturbation of the LFSR sequence a by a binary
symmetric channel with a probability p of flipping each bit.
The attack is based on obtaining posterior probabilities for
each bit by the a priori probability (p). These probabilities
indicate the probability that a certain bit of z is equal to the
corresponding bit of a. The bits of z whose probabilities are
less than a given threshold are flipped.

In order to recover the LFSR sequence a from z, the
bits of the sequence z are replaced in the linear equations
derived from the feedback polynomial of LFSR A (LA).
Linear equations of a for a fixed bit an are given as follows:

L1 = an + b1 = 0 (2)
L2 = an + b2 = 0

...
Lm = an + bm = 0,

where each bi (i = 1, . . . ,m) is a sum of t different bits of
a. Thus, a number of linear equations are obtained for each
bit zn (n = 1, . . . , N) of z as

L1 = zn + y1 = 0 (3)
L2 = zn + y2 = 0

...
Lm = zn + ym = 0,

where each yi (i = 1, . . . ,m) is a sum of t different bits of z.
The equations are satisfied if zn = an and yi = bi or zn �= an
and yi �= bi. We know that Pr(zn = an) = p. Let s be the
probability that yi = bi and can be calculated by the following
recursive formula:

s(p, t) = ps(p, t− 1) + (1− p)(1− s(p, t− 1))
s(p, 1) = p. (4)
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For each bit zn of z, the number of the equations satisfied in
Eq.3 is determined. We denote this number by h. Then, we
calculate the conditional probability of zn = an given that h
equations are satisfied by

P (zn = an|h eqs. hold) =
psh(1− s)m−h

psh(1− s)m−h + (1− p)(1− s)hsm−h
,

(5)
The basic idea behind the algorithms given in [1] is to use

posterior probabilities given in Eq.5 to obtain a from z.

III. FAST CORRELATION ATTACK ALGORITHMS

Two algorithms given in [1] and a slightly modified version
of Algorithm B are given in this section.

A. Algorithm A

In Algorithm A, the correct bits satisfying the linear equa-
tions are searched. This process is done by selecting the bits
that satisfy sufficient equations. In this way, an estimate of
the sequence a is obtained at the corresponding bit positions.
Thus, small modifications on the estimated sequence will lead
to the original sequence a.

The steps of Algorithm A is as follows:
1. Determine the expected number of the equations m by

using the formula

m(N, k, t) ≈ log(
N

2k
)(t+ 1). (6)

2. Find the maximum value of h such that Q·N ≥ k, where
Q is the probability that at least h of m equations are
satisfied and computed by

Q =
m∑

i=h

(
m

i

)(
psi(1− s)m−i + (1− p)(1− s)ism−i

)
,

(7)
where s is given in 4.

3. Compute the new probabilities p∗ according to Eq.5 for
the bits of z and choose the bits having the highest
new probabilities as a reference guess I0 of a at the
corresponding bit positions.

4. Find the correct guess by making modifications of I0
by changing 0, 1, 2, . . . bits and testing the correlation
of the resulting LFSR sequence with z.

B. Algorithm B

In Algorithm B, the bits of z are considered together with
the probability of being correct. It is known that the correlation
probability between z and a is p. Each bit zn of z is assigned a
new probability p∗, which is the probability that zn = an and
this probability depends on the number of equations satisfied
or not satisfied by zn. This conditional probability is computed
by Eq.5. The conditional probability for zn �= an can be
computed similarly.

Calculating the conditional probabilities is repeated α times
with a new p∗ at each step. In [1], it is mentioned that
α = 5 is a suitable choice for many cases. After α times
re-computations of p∗, all bits having the probability p∗ lower
than a certain threshold are complemented. At the end of each

step (item 3-7 below), a new z sequence is obtained. It is
expected that the number of wrong bits in z will decrease at
each step. These steps are repeated several times with a new
z sequence and it is expected that this algorithm will end up
with the correct LFSR sequence a.

The steps of Algorithm B is as follows:
1. Determine the expected number m of the equations

using Eq. 6 .
2. Find the value of h which maximizes I and call it hmax.

I is the difference between the probability that at most h
equations are satisfied when zn �= an and the probability
that at most h equations are satisfied when zn = an. I
can be obtained by the formula

I =

h∑

i=0

(
m

i

)(
(1− p)(1− s)ism−i − psi(1− s)m−i

)
.

(8)
Then, calculate pthr and Nthr by using hmax as follows:

pthr =
1

2
(p∗(p,m, h) + p∗(p,m, h+ 1)) , (9)

Nthr = U(p,m, h) ·N. (10)

p∗ is calculated according to the Eq. 5. U is the
probability that at most h of m equations are satisfied
and is calculated as follows:

U =
h∑

i=0

(
m

i

)(
psi(1− s)m−i + (1− p)(1− s)ism−i

)
.

(11)
3. Initialize the iteration counter i = 0.
4. For every bit of z, compute the new probability p∗ given

in Eq. 5. Determine the number Nw of the bits with
p∗ < pthr.

5. If Nw is smaller than the expected number of the bits
with p∗ < pthr or i < α increment i and go to 4.

6. Complement the bits of z with p∗ < pthr and set the
probability of each bit to the original probability p.

7. If there are still bits not satisfying the linear relation of
LFSR sequence a, go to 3.

8. Terminate with a = z.

C. Modified Algorithm B

For some correlation probabilities close to 0.5 Algorithm B
needs longer output sequences. If the length of the output
sequence N is not long enough, Algorithm B fails to find a.
In this case all p∗ values are greater than pthr, so Nw, which
is the number of bits to be complemented, becomes 0. On the
other hand, a cannot be obtained by the algorithm, because
there are still bits not satisfying the recurrence relations of the
LFSR. If this is the case, we propose to make a small change
in Algorithm B as follows:

4′. For every bit of z, compute the new probability p∗

with respect to the number of the equations satisfied.
Determine the number Nw of the bits with p∗ < pthr.
If Nw = 0, decrease α by 1. If α = 0 algorithm fails.

Figure 2 shows the comparison of Nw values for the original
and the modified versions of Algorithm B for p = 0.56 and
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N = 70000. As it is seen from this figure, Algorithm B
oscillates in Nw values after Nw = 0. This situation results
in the failure of Algorithm B to find a. On the other hand,
whenever Nw = 0 the modified algorithm starts to decrease α
and change the value of Nw at each step and thus finds a.
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Modified Alg. B
Alg. B

Fig. 2. Comparison of Nw values for the original and the modified
Algorithm B for p = 0.56 and N = 70000

Table I compares the original and the modified versions of
Algorithm B with respect to the number of bits that become
true or false after flipping at each step for the correlation
probability p = 0.56 and N = 70000. The first column in
the table is the number of steps executed. The second and the
third column is the number of bits that become false and true,
respectively, after flipping in the original Algorithm B. The
fourth and the fifth columns are the corresponding columns
for the modified version of Algorithm B. As it is seen from
Table I, after step 14 Algorithm B cannot find any bits to
flip, whereas the modified algorithm continues the process and
finds the LFSR sequence at step 16.

IV. EXPERIMENTAL RESULTS

In the numerical experiments the following primitive feed-
back polynomial is chosen for LA,

c(X) = 1 +X2 +X35. (12)

The length of the LFSR is 35 and the number of tabs is 2.
Figure 3 and Figure 5 show the correlation between a and

z at each step for different keystream lengths for the initial
correlation probabilities p = 0.56 and p = 0.60, respectively,
with the original Algorithm B. As it is seen in Figure 3, if
N ≤ 70000, the original Algorithm B fails to find sequence
a for p = 0.56. Figure 5 shows that if N ≤ 9500, it fails to
find sequence a for p = 0.60.

Figure 4 and Figure 6 show the correlation between a and
z at each step for different keystream lengths when using
the modified algorithm. In the figures the initial correlation
is taken as p = 0.56 and p = 0.60, respectively. As it is seen
from the Figure 4, for p = 0.56 the modified version success-
fully finds the sequence a for N > 30000. For N = 30000 and

TABLE I
NUMBER OF BITS THAT BECOME TRUE OR FALSE AFTER FLIPPING FOR

p = 0.56 AND N = 70000

Step Algorithm B Modified Alg. B
Number False True False True

1 2073 2182 2073 2182
2 2153 2384 2153 2384
3 3206 3479 3206 3479
4 3047 3474 3047 3474
5 1993 2935 1993 2935
6 1335 4512 1335 4512
7 539 5514 539 5514
8 233 8484 233 8484
9 87 8616 87 8616
10 0 2674 0 2674
11 0 58 0 58
12 0 19 0 19
13 0 7 0 7
14 0 0 0 0
15 0 0 8 838
16 0 0 0 422
17 0 0
18 0 0
19 0 0
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Fig. 3. The correlation between a and z at each step for different keystream
lengths N and the initial correlation p = 0.56 with the original Algorithm B,
number of tabs is 2, α = 5.

N = 20000 the modified algorithm finds a sequence which is
not equal to a. We conclude that decreasing α, while being
able to find sequences that the standard algorithm fails to find,
is not applicable in all cases. Figure 6 shows that the modified
version can find the sequence a for N > 4250, for p = 0.60.

V. CONVERGENCE SPEED OF ALGORITHM B

In this section, we give the experimental results of the
original Algorithm B to show the relationship between the
number of steps executed to obtain the LFSR sequence a
and the length of the output sequence N , and the correlation
probability p.
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Fig. 4. The correlation between a and z at each step for different keystream
lengths N and the initial correlation p = 0.56, number of the tabs is 2 with
the modified algorithm
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Fig. 5. The correlation between a and z at each step for the initial correlation
p = 0.60 and different keystream lengths N with the original Algorithm B

A. The Effect of the Keystream Length on Convergence

If the length of z is increased, there will be more equations
to be checked. Thus, the decision that an = zn will be
more accurate. So, we expect that if the length of the output
sequence is increased in the original Algorithm B, the number
of steps executed to obtain the LFSR sequence a will be
decreased. This is confirmed in Figure 7.

Figure 8 and Figure 9 show that for fixed correlation
probabilities p = 0.56 and p = 0.60, respectively, the number
of steps decreases while the length of the keystream increases.

B. The Effect of the Correlation Probability on Convergence

If tests are done on sequences with larger correlation proba-
bilities, the number of steps will decrease, since Pr(an = zn)
will become larger at each step. Figure 10 shows the number
of steps for p = 0.56 and p = 0.60 for different keystream
lengths.
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Fig. 6. The correlation between a and z at each step for the initial correlation
p = 0.60 and different keystream lengths N with the modified algorithm
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Fig. 7. Number of steps for different correlation probabilities in the original
Algorithm B for the output lengths N=71000 and N=100000

Figure 11 and Figure 12 show that for fixed keystream
lengths N = 71000 and N = 100000, respectively, the
number of steps decreases when the correlation probability
increases.

VI. CONCLUSION

We analyze Algorithm B in Meier-Staffelbach’s fast correla-
tion attack. For some keystream lengths and correlation proba-
bilities this algorithm fails to find the LFSR sequence. We pro-
pose to decrease the iteration number α in the algorithm. We
show that decrease in α makes the attack successful for shorter
keystream lengths. However, in some cases this modification
may result in a completely different sequence than the LFSR
sequence. We also analyze the speed of the algorithm under
fixed correlation probabilities and keystream lengths. For
higher correlation probabilities or longer keystream lengths
a decrease in the steps executed to find the LFSR sequence is
observed as it is expected.
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Fig. 8. Number of steps for different output lengths (in thousand) in the
original Algorithm B for the correlation probability p = 0.56
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Fig. 9. Number of steps for different output lengths (in thousand) in the
original Algorithm B for the correlation probability p = 0.60
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Fig. 10. Number of steps for different output lengths (in thousand) in the
original Algorithm B for the correlation probabilities p = 0.56 and p = 0.60
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Fig. 11. Number of steps for different correlation probabilities in the original
Algorithm B for the output length N=71000
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Fig. 12. Number of steps for different correlation probabilities in the original
Algorithm B for the output length N=100000
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